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The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research 
and New-Developments (K-TRAN) Research Program funded this research project. It is 
an ongoing, cooperative and comprehensive research program addressing transportation 
needs of the state of Kansas utilizing academic and research resources from KDOT, 
Kansas State University and the University of Kansas. Transportation professionals in 
KDOT and the universities jointly develop the projects included in the research program. 
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Transportation, 915 SW Harrison Street, Room 754, Topeka, Kansas 66612-1568 or 
phone (785) 296-3585 (Voice) (TDD). 
 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the 
facts and accuracy of the data presented herein. The contents do not necessarily reflect 
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ABSTRACT 

 

Long-term prediction of the performance and durability of pavement represents a critical and 

vital issue in the life-cycle-cost analysis used in the Kansas Department of Transportation’s 

(KDOT) pavement surface-type selection process. Accurate prediction of roughness progression 

on Portland cement concrete (PCC) pavements is very important since the current model used by 

KDOT is based on the pavement serviceability guidelines (1993 AASHTO Design Guide).  In 

this study, dynamic artificial neural network (ANN) and statistical analysis approaches were 

used to develop reliable and accurate time-dependent roughness (International Roughness Index, 

IRI) prediction models for the newly constructed Kansas Jointed Plain Concrete Pavements 

(JPCP).  To achieve this objective, data used in the model development process include 

construction and materials data as well as other inventory items such as traffic and climatic 

related data, which reflect the section-specific local conditions in Kansas.       

Utilizing a two-stage training approach, a three- layer (19-10-1) time-dependent ANN-

based roughness prediction model was developed.  It was able to project the time-dependant 

roughness behavior with a reasonably high coefficient of determination, R2 = 0.90 (ANN-based 

model) and R2 = 0.73 (SAS-based model).  The sensitivity analysis performed herein quantified, 

to some degree, the impact of various key input parameters on the PCC pavement roughness 

profile.  To further validate the developed ANN-based model, it was used to predict IRI values 

for years 2001 (R2 = 0.80) and 2002 (R2 = 0.74) data.  Using a multiple regression analysis 

technique, a statistical-based model was developed and then used to project the 20-year and 30-

year IRI values.   
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Chapter 1 

Introduction 

 

1.1 Background 

Performance evaluation of pavements should be on a well-planned basis and be an integral part 

of the overall pavement management system.  Accurate prediction of pavement performance 

over longer periods of time represents a critical issue in the Pavement Management System 

(PMS) of the Kansas Department of Transportation (KDOT).  The success of pavement design is 

largely dependent on subsequent construction, maintenance, and rehabilitation.  Portland Cement 

Concrete pavements provide adequate service for only up to 10 or 12 years, and sometimes less, 

without major maintenance or rehabilitation (Byrum et al., 1997).  It is quite feasible to provide 

an initial service life of 20 or 25 years performance.  Consequently, many agencies have 

recognized the need to link together explicitly the activities of planning, designing, constructing, 

and maintaining pavements.   

 This research aims at developing reliable and accurate time-dependent roughness 

prediction models for newly constructed Jointed Plain Concrete Pavements (JPCP) in Kansas.  

The developed models employ quantified relationships to predict subsequent pavement 

performance for a given project and have the ability to relate measured input variables to the 

level of expected performance.  Usage of these predictive models will allow KDOT’s 

geotechnical/pavement unit to obtain reliable and accurate predictions of the future condition of 

the pavement based on measured engineering parameters.  In particular, these performance 

models will allow the geotechnical/pavement unit to project and simulate the performance of 

pavement structures using various construction design strategies. 
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1.2 Research Objectives  

The broad objective of the study is to develop rational, practical, easy-to-implement, reliable, 

and accurate time-dependent performance projection/prediction models for newly constructed 

Kansas rigid pavements (Jointed Plain Concrete Pavements, JPCP) using dynamic Artificial 

Neural Network (ANN) and statistical analysis approaches.  Inputs for model development take 

into consideration various parameters related to pavement design inputs, concrete paving 

material used, prevailing traffic loadings, construction quality, subgrade soil properties, and 

prevailing climatic conditions.  

1.3 Problem Statement 

For decades KDOT has developed rehabilitation, resurfacing, and reconstruction strategies for 

flexible, composite, and rigid pavements.  The pavement surface type selection process in the 

KDOT for alternate strategies uses Life-Cycle-Cost (LCC) analysis.  Many factors affect 

pavement behavior or performance.  Research on pavement performance has failed to produce a 

definitive relationship of distress outputs and pavement performance (Hass et al., 1994).  

Defining the need for these relationships is a first priority research need.  

The new construction program for pavements in Kansas is in the range of $150 to $200 

million (Hancock, 2000).  Therefore, accuracy of the pavement performance prediction model is 

essential to minimize funds expended on these pavements.  A significant portion of these funds is 

usually spent on pavement related activities such as rehabilitation, resurfacing, and new 

construction.  Identifying and selecting strategies that can potentially perform better than others 

could provide a high benefit return.  Rational pavement performance prediction and projection 
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models are needed so that funds expended on pavement rehabilitation, resurfacing, and new 

construction can be minimized. 

1.4 Literature Review 

In the past, many studies have been conducted in order to develop performance (i.e., pavement 

distress and roughness) prediction models for the newly constructed Jointed Plain Concrete 

Pavements (JPCP).  Some progress is being made on the development of increasingly 

sophisticated analytical tools for modeling the long-term pavement behavior.  The pavement 

performance evaluation procedure generally involves a study of the functional behavior of a 

section or length of pavement structure.  This is important to in pavement design, rehabilitation, 

and management tasks.  The objective of the earlier studies on performance prediction and 

analysis models involved in predicting PCC pavement distress indices (Yu et al., 1997; Hoerner 

et al., 1999) was primarily an improvement of the key distress indicator and roughness prediction 

models used in the prototype Performance-Related Specifications (PRS) for Jointed Plain 

Concrete Pavement (JPCP).  Using version 2.0 of the PaveSpec PRS demonstration software, Yu 

et al. (1997) and Hoerner et al. (1999) established that the prototype PRS was improved.  As a 

result, the PavSpec PRS demonstration software was upgraded to Version 3.0 (Hoerner et al., 

2000). 

 In the case of the development of Performance-Related Specifications for JPCP, the 

specific data elements required by distress indicator models were summarized.  Depending on 

the required data elements, such models predicted the development of joint spalling, faulting, 

slab cracking, and pavement smoothness over time.  The existing literature documented this 

approach (Byrum et al., 1997; Hoerner et al., 1999; Owusu-Antwi et al., 1997; Simpson et al., 

1994).  
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 Similarly, using a local Microsoft Access database, Titus-Glover et al. (1999) developed 

improved pavement distress and roughness prediction models that incorporate mechanistic 

principles but that are still practical for use by State highway agencies.  Likewise, Yu et al. 

(1997) used the ORACLE database management system to evaluate the performance of 303 in 

service concrete pavement sections located throughout North America.        

 Because price adjustments are directly dependent on the future pavement performance 

predicted through mathematical prediction models, it is important to have confidence in the 

validity or accuracy of these models.  In recent years, State Highway Agencies (SHAs) have 

expressed concern over whether the prediction models would accurately predict the pavement 

performance associated with their agency’s specific designs, materials, subgrades, traffic, and 

climatic conditions.  This important question must be adequately addressed, or it will inhibit the 

implementation of the model in Kansas.  Therefore, the focus of this study is to develop new 

performance models that reflect the local conditions.   

 Current efforts should be concentrated on the development of enhanced and improved 

pavement models to predict the time-dependent pavement roughness profiles, since many of the 

existing models contain substantial limitations.  In this study, the dynamic Artificial Neural 

Network (ANN) and statistical analysis approaches were utilized to establish an efficient, 

rational, and practical, easy-to-implement, time-dependent roughness prediction model for the 

newly constructed JPCP in Kansas.   
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Chapter 2 

Project Identification and Data Collection 

 

2.1 Selection of Projects 

Twenty-three projects on state, US and Interstate routes in Kansas were selected in this study as 

shown in Table 2.1.  All data types for 23 constructed projects (total 102 of 1-mile sections) for 

newly built jointed plain concrete pavements (JPCP) on I-35, I-70, I-435, K-15, K-96, US-50, 

US-56, US-75, and US-77 were collected from the Kansas Department of Transportation 

(KDOT) historical pavement database.  Each project has a different construction date.  The 

oldest project was constructed in 1993, while the newest project was constructed in 1998.  All 

the PCC pavement sections considered are Jointed Plain Concrete Pavements (JPCP) with 4.6 m 

(15 ft.) joint spacing, doweled joints and tied shoulder.  The projects vary in length from 1.6 km ( 

1 mile) to 32 km (20 miles).  The JPCP slab thicknesses vary from 229 mm (9 in.) to 292 mm 

(11.5 in.).  The number of ESALs (Equivalent Single Axle Loads) in a year is calculated by the 

following:  the AADT (Average Annual Daily Traffic) is multiplied by the percentage of trucks 

and then multiplied by the average-ESALs-per-truck factor, which is in turn multiplied by the 

number of days in a year.  A truck factor of 1.7 for rigid pavements was used.  The database for 

each section included annual roughness values measured during each year after construction.  

The last available roughness IRI data was for year 2003.  Longitudinal profile measurements 

were done on right and left wheel paths with a South Dakota-type Profilometer.  From these 

profile data, the International Roughness Index (IRI) values were calculated with the RoadRuf 

software developed by the University of Michigan Transportation Research Institute.  The IRI 

value used in this study represents only the right wheel-path readings.   
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TABLE 2.1: Selected Portland Cement Concrete (PCC) Projects 

 
No. Project K County Lane Route Construction 

Begin 
County 

End 
County 

 Number    Year Milepost Milepost 
1 K-2633-01 Lyon  East I-35 1995 10.9 16.7 
2 K-2633-01 Lyon  West I-35 1995 10.9 16.7 
3 K-3596-01 Franklin  East I-35 1996 0 3.2 
4 K-3596-02 Franklin  East I-35 1996 3.2 9 
5 K-4088-02 Johnson East I-35 1997 13 16 
6 K-4088-02 Johnson West I-35 1997 13 16 
7 K-2446-01 Shawnee  North I-70 1993 11.7 15 
8 K-3344-01 Shawnee  South I-70 1994 9 10 
9 K-2447-01 Wyandotte  North I-70 1994 15.6 17.1 

10 K-2447-01 Wyandotte  South I-70 1994 15.6 17.1 
11 K-3637-01 Johnson West I-435 1997 0 3.3 
12 K-4058-03 Harvey  Undivided US-50 1996 28.7 35.6 
13 K-3216-02 Chase Undivided US-50 1998 0 9 
14 K-3217-02 Chase Undivided US-50 1998 9 19 
15 K-4422-02 Ford Undivided US-56 1997 12.2 16 
16 K-3251-01 Jackson  East US-75 1996 8 12 
17 K-3251-01 Jackson  East US-75 1996 12 17.3 
18 K-3251-01 Jackson  West US-75 1997 8 12 
19 K-3251-01 Jackson  West US-75 1997 12 17.3 
20 K-4341-01 Shawnee  East US-75 1997 20 22 
21 K-4341-01 Shawnee  West US-5 1997 20 22 
22 K-3684-01 Sedgwick West K-5 1998 0 5.7 
23 K-4460-01 Sedgwick North K-96 1997 3.9 14.7 

 

2.2 Selection of Data Elements and Data Collection  

The data was categorized and assembled into an Excel spreadsheet to prepare for the analysis 

using dynamic Artificial Neural Networks (ANNs) and statistical analysis (SAS program) 

methodology.  Initially, fifty-six different potential input variables were listed.  However, after 

data cleansing and thorough examination, the database was limited to twenty-six practical input 

variables.  The detailed database development of the twenty-six input variables included 

pavement profile (initial smoothness represented by initial roughness IRI value), pavement 

section, pavement layer, time-series traffic, subgrade type and treatment, climatic conditions, 

shoulder type, concrete materials test data, and concrete mixture data.  Pavement layer data 
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included PCC slab thickness and type of base drainage, such as Portland Cement Treated Base 

(PCTB) and Bound Drainable Base (BDB).  Time-series traffic data refers to the cumulative 80-

kN (18-kip) Equivalent Single-Axle Loads (ESALs) and is used herein to represent traffic 

loadings.  Climatic information was included in order to develop a model, which can directly 

account for section-specific climatic conditions.  The output variable was the time-series (i.e., 

yearly) right wheel path roughness IRI value, which is used to quantify the long-term pavement 

roughness performance.    

 In order to find the factors that influence the pavement roughness prediction models, the 

independent variables (data elements) listed in Table 2.2 were considered in the analysis.  The 

elements were divided into different groups.  Table 2.2 lists the elements in each group.  The 

climatic data was provided by the Kansas State University Weather Data Library.  The historical 

roughness data was obtained from the KDOT Pavement Management Information System 

(PMIS) database.   
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TABLE 2.2: Data Elements Selected as Independent Variables for Portland Cement 
Concrete (PCC) Pavements 

 

INVENTORY 

-County code  -Route Number 

-Project Number -Begin county milepost 

-End county milepost -Project length  

-Cumulative AADT (year) -Cumulative truck factor (year) 

*-Cumulative yearly ESAL values *-Initial IRI roughness, right wheel path (in./mile) 

 *-IRI roughness value at age (n) year (in./mile) 

CONSTRUCTION 

*-Age of pavement (year) *-PCC slab thickness (in.) 

-Base thickness (in.)      *-Plasticity index of natural subgrade soil material 

*-% Subgrade material passing No.4 sieve *-% Subgrade material passing No.200 sieve 

*-Subgrade treatment: *-Base material and treatment type  

no treatment (N/A) (=0) Drainable base =1;  Non-drainable base =0:        

6” lime treated subgrade (=1) Cement Treated Drainable Base (CTDB)=1 

6”  fly ash treated subgrade  (=2)  Edge drain=1 ,   No edge drain=0 

*-Unit weight of concrete (lb/ft3) Bound Drainable Base (BDB)=1 

-Flexural strength of concrete (psi) Portland Cement Treated Base (PCTB)=0 

-Water-cement ratio -Shoulder type (paved=1 or unpaved=0) 

-Air content (%) -Total width of outside shoulder (ft) 

-Weight percentage of coarse aggregate in mix -Shoulder thickness (in.) 

-Slump (in.) -Pavement cross-slope (1.6%) 

*-Cement factor (lb/yd3)  

-Weight percentage of fine aggregate in mix  

CLIMATE 

-Cumulative annual precipitation (in.) *-Cumulative number of days below 32 °F per year  

*-Cumulative number of days above 90 °F per year *-Cumulative number of days per year with over 
0.4 in. precipitation 

-Mean annual temperature (°F)  *-Average number of freeze-thaw cycles per year 

*-Minimum annual temperature (°F)  -Maximum annual temperature (°F) 

 -Depth of frost penetration (in.) 
 
* independent variable used in models 
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Chapter 3 

Factors Affecting Roughness Progression 

 

3.1 ANN-BASED MODEL 

3.1.1 Methodology (ANNs) 

Artificial Neural Networks (ANNs) are mathematical models and algorithms designed to 

mimic the information processing and knowledge acquisition of the human brain (Basheer, 

1998).  ANNs are difficult to represent in a single mathematical equation and, therefore, are 

represented by a set of layers that constitute the network.  An example of a multilayer 

backpropagation ANN is depicted in Figure 3.1.  The basic building block of the network system 

is the neuron that communicates information to and from the various parts of the body.  All 

artificial neurons interconnect with each other to form what is called an Artificial Neural 

Network.  Other common names for ANNs are Artificial Neural Systems, Connectionism, 

Adaptive Systems, Adaptive Networks, Neuro-Computer, and Parallel Distribution Processor 

(Itani and Yacoub, 2000).  In this study, ANN methodology is utilized to develop the desired 

neural-based roughness prediction model.  ANNs are used as prediction tools capable of 

capturing the patterns or relation between the specific input(s) and desired output(s).     

As shown in Figure 3.1, main elements of an Artificial Neural Network are the input 

layer, hidden layer(s), output layer, and connection weights.  The input layer contains the input 

variables, and the output layer contains the target output vector (output variable).  The hidden 

layers are placed between the input and output layer.  The computational efficiency of the 

network depends on its interconnection weights.  The input layer containing the input nodes 
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FIGURE 3.1: Schematic of the Architecture of a Typical Backpropagation ANN 
with Two Hidden Layers
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performs no mathematical operations.  It receives and processes information and forwards them 

to the hidden layer. The hidden layer could contain one or more layers consisting of a set of 

neurons that process information within the network body.  Therefore, the most important 

operations occur in it.  The hidden layer receives the processed data and then processes and feeds 

them forward towards an output layer.  The number of hidden layers, as well as the number of 

neurons contained within each layer, affects dramatically the accuracy of the developed models.  

The output layer could contain one or more output neurons that will produce prediction for a 

certain output variable.  Connection weights are the interconnecting links between the neurons in 

successive layers.  Each neuron in a certain layer is connected to every single neuron in the next 

layer by links having an appropriate and an adjustable connection weight.  No side connections 

are permitted in this type of network (Ali, 2000).   

The three- layered (i.e., input-hidden-output layers) feed-forward error-Back Propagation 

Neural Network (BPNN) structure is used in this study.  Back-propagating the error (i.e., the 

difference between the actual and computed outputs) to adjust connection weights represents the 

training process.  Similar BPNNs have been successfully used in various civil engineering 

applications.  Three tasks must be performed before the training of a network begins:  i) make an 

initial choice of the neural network architecture (or network structure), ii) assign initial random 

values for the connection weights to calculate the output, and iii) finally, select a learning rate, 

which can appropriately control the adjustment rate of the connection weights.  The training is 

accomplished by calculating the output using the assigned initial random connection weights and 

back-propagating the error through the hidden layer.  This procedure is repeated for all training 

data sets until the actual and calculated outputs agree within some pre-determined tolerance.  
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Training is performed in order to determine the best possible values of connection weights for 

further use as a prediction tool (Najjar, 1999; Najjar et al., 2000).   

 As mentioned earlier, the nodes in a certain layer are connected to all nodes in the 

following layers.  Each node receives signals from all other neurons located in the previous layer 

and integrates those signals as a weighted average.  For example, input value for neuron “m” is 

the sum of all impinging signals multiplied by their respective weights; thus,  (input)m = S(node 

value) x connecting weight.  The input for a certain neuron might either be very large or 

negative.  It is to be noted that this is generally not desirable.  In order to avoid large or negative 

values and to introduce nonlinearity in the model, we make the neuron’s input undergo an 

additional nonlinear transformation to produce an output:  (out)m = f (input)m, where “f “ is a 

transfer function and “(input)m” is the value calculated previously.  The integrated signal is 

transformed to activation via a transfer function such as the sigmoidal function.  The sigmoidal 

function is a continuous activation function, designed to respond relative to the amount of 

excitation received.  It is the most widely used function in various BPNN applications.  

Mathematically, it is represented by the following equation (Itani and Najjar, 2000):    

  
 (1) 

Similarly, the transformed signal is transmitted forward to the following layer.  The 

process is performed to calculate the output of a neuron at the output layer.  The produced 

outputs are then compared to actual (target) outputs to evaluate the error, which is used to 

calculate an error function.  The resulting error function is used to propagate the error starting 

from the weights connected to the last layer (output layer), and backward to the input layers in 

backpropagation of error, in order to modify the weights.  The procedure of forward activation of 

1
1+ −e input( )
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signals and the backpropagation of errors is repeatedly carried out until the error at the output 

side reduces to a prespecified minimum (Najjar et al., 1997; Najjar and Zhang, 2000). 

 Neural Networks could reach a least-error structure by training on a number of data sets.  

A least-error structure is needed to produce output values that are as close to the actual values as 

possible.  The least-error structure (maximum structure) also shows the maximum number of 

hidden nodes that the training was allowed to reach and the corresponding maximum number of 

iterations.  In this study, a maximum structure of 10-6000 was obtained, indicating that the 

maximum allowable number of hidden nodes is specified to be 10 and an iteration of 6000 

should be reached at node 10.  According to Najjar and co-workers (Itani and Najjar, 2000; 

Najjar and Zhang, 2000), for proper ANN modeling, a two stage training approach may be 

needed.  In the first stage, the full database is divided into training, testing, and validation sub-

bases, and then the least-error-structure is determined.  If accuracy measures of the least-error 

structure are comparable for training, testing, and validation data sets, then the second stage of 

training is not warranted.  On the other hand, if the accuracy measures are not comparable, the 

least-error structure determined from stage one is then retrained on the entire database.  In this 

study, during the first stage of training, the database containing a total of 415 data sets was 

divided into 225, 93, and 97 data sets for training, testing, and validation, respectively.  In 

selecting the testing and validation data sets, it is highly recommended that data sets should be 

within the domain of the training data sets to prevent the developed network from extrapolating 

beyond the training domain.   

Dynamic ANN-based training technique adopted by Najjar (1999) and Najjar & Zhang 

(2000) is utilized herein to model the time-dependent pavement roughness performance.  This 

technique is utilized within the framework of the conventional feed-forward error-back 
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propagation neural network approach.  According to the feedback approach, the year (n+1) 

roughness IRI value, (IRI)n+1 is determined from a number of previously determined input 

parameters.  This logic can mathematically be represented in the following compact fo rm: 

{(IRI)n+1} = ANN (m+1)-k-1{x1, x2, ... , xm, (IRI)n}        (2) 

where ANN denotes the neural network model that best relates a given number of inputs (m+1) 

[i.e., x1, x2, ... , xm, (IRI)n] to the desired output, (IRI)n+1.  Note that {x1, x2, ... , xm} is a vector of 

(m) parameters used herein to represent all static input parameters that are believed to affect the 

desired output.  The (m+1)-k-1 notation denotes the architecture of the selected network.  In this 

case, (m+1) represents the (m) static inputs, (k) is the optimal number of hidden nodes as 

determined through the training and testing process, and (1) is the desired number of output, 

namely; the futuristic roughness IRI value [i.e., (IRI)n+1].   

3.1.2 Model Development (ANNs) 

In order to filter out the most influential static input parameters, various ANN modeling 

trials were performed.  In the final optimal network (utilizing the previously mentioned two stage 

training approach), the input parameter vector contained the following 19 variables:  

1. SLTH PCC slab thickness (in.) 

2. BTYD  Drainable base (1 = Yes, 0 = No) 

3. BTYN Non-drainable base (1 = Yes, 0 = No) 

4. UW Concrete unit weight (lb/ft3) 

5. CFA Cement factor (lb/yd3) 

6. SUBTRT_N Non-treated subgrade (1 = Yes, 0 = No) 

7. SUBTRT_L 6 in. lime treated subgrade, LTSG (1 = Yes, 0 = No) 

8. SUBTRT_F 6 in. fly ash treated subgrade (1 = Yes, 0 = No) 

9. FSI  % of natural subgrade soil material passing No. 4 sieve 

10. TSI  % of natural subgrade soil material passing No. 200 sieve 

11. PI  Plasticity index of natural subgrade soil material 
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12. ESAL Cumulative yearly ESAL values 

13. FTC  Average number of freeze-thaw cycles per year 

14. DB Cumulative total number of days below 32 °F/yr 

15. DA  Cumulative total number of days above 90 °F/yr 

16. WET Cumulative number of days per year with over 0.4 in. precipitation 

17. IIRI Initial right wheel path IRI values (in./mile) 

18. AP Age of pavement (year) 

19. (IRI)n    IRI value at age (n) year (in./mile) 

 

As noted earlier, the input layer includes a dynamic variable [i.e., (IRI)n] that represents 

the IRI value at age (n) year.  Accordingly, all nineteen input parameters (i.e., eighteen static and 

one dynamic) are used via the developed ANN-based model to predict the IRI value [i.e., 

(IRI)n+1] at age (n+1) year.  Note that, the initial value for (n) is zero.  Based on the stage one 

training, the optimal network architecture was found at ten (10) hidden nodes.  Accordingly, the 

final form of Eq. (2) can be represented by the following expanded form: 

{(IRI)n+1} = ANN19-10-1{SLTH, BTYD, BTYN, UW, CFA, SUBTRT_N, SUBTRT_L,  

   SUBTRT_F, FSI, TSI, PI, ESAL, FTC, DB, DA, WET, IIRI, AP, (IRI)n }         (3) 

Based on the stage two training, the 19-10-1 ANN-based IRI prediction model yielded a 

coefficient of determination, R2, of 0.90.  A graphical comparison between the predicted and 

actual IRI values is depicted in Figure 3.2.  Even though some scatter is noted in this figure, most 

of the data is predicted reasonably well.   
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FIGURE 3.2: Comparison between Actual and Predicted IRI Values for the Developed 
ANN (19-10-1) Model (R2 = 0.90) 

 

3.1.3 Independent Validation 

To further validate the developed ANN-based model, it was used to predict IRI values for 

years 2001 and 2002 data.  This comparison between predicted and actual values for 2001 and 

2002 years are respectively depicted in Figures 3.3 and 3.4.  In this case, R2 values of 0.80 and 

0.74 were obtained for year 2001 and 2002 data, respectively.  As expected, model prediction 

accuracy decreases as extrapolation time is increased.  
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FIGURE 3.3: Predicted IRI for the Year 2001 (R2 = 0.80) 
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FIGURE 3.4: Predicted IRI for the Year 2002 (R2 = 0.74) 
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3.1.4 ANN Sensitivity Analysis 

In order to assess the impact of each independent input variable on the time-dependent 

IRI profile, a sensitivity analysis was performed.  To accomplish this objective, a PCCP section 

was selected to represent the 102 sections by the average input values of all sections.  

Accordingly, when logically possible, each input variable was then varied within its applicable 

range (keeping all other input variables stationary).  The time-dependent IRI profile was 

calculated via the developed 19-10-1 ANN-based model for a total of seven years.  The seven-

year span was chosen herein to represent the model’s utility period. As stated earlier, this period 

is made up of the 5-year data used for model training and the additional 2-year data used for 

model validation.  Selected plots for variables showing the maximum impact on IRI time-

dependent profile are presented in this paper.  Factors that, so far, have shown the greatest 

impact on the roughness are BTYD, BTYN, IIRI, SLTH, SUBTRT_N, SUBTRT_L, and 

SUBTRT_F.  In this study, IIRI and SLTH values were varied from 30 to 90 in./mile and from 8 

to 12 in., respectively.   

It is noteworthy to mention that conducting the sensitivity analysis by changing one input 

variable over a wide range, while keeping all other input variables stationary, may not be fully 

valid in some cases.  Additionally, trends noted herein may not be fully true if a different PCC 

section is used to perform the sensitivity analysis.  However, similar sensitivity analysis can be 

performed, if desired, using the developed ANN-based IRI prediction model.      

The choice of using drainable or non-drainable bases significantly influences the 

roughness as illustrated in Figure 3.5.  This factor seems to produce the largest impact on IRI 

profiles, observed in this study, for Kansas JPCP pavements.  Figure 3.5 demonstrates that non-

drainable bases will result in PCC pavements having higher roughness.  Drainable bases tend to 
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have overall lower roughness profiles.  Note that, bases that are non-drainable, are also 

impermeable.  In this case, trapped water can cause swelling of the bases (or subgrades) and 

eventually leads to an uneven pavement surface.  On the other hand, proper drainage will 

decrease the swell potential of the subgrades or bases.  Numerically, for the case considered 

herein, the use of drainable base will decrease dramatically the roughness by 48 in./mile.  In 

other words, after seven years of service, a drainable base tends to produce a roughness, which is 

about 48 in./mile lower than non-drainable base.  This clearly indicates that a drainable base will 

help retain the smoothness longer compared to non-drainable bases.   
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FIGURE 3.5: Predicted IRI Values for Drainable and Non-drainable Base 
 
Figure 3.6 illustrates the influence of initial IRI on the time-dependent future roughness.  

The initial IRI is the IRI measured during the first year after construction.  As indicated in Figure 

3.6, the same profiles seem to progressively become smoother with time as vehicles travel over 

them.  Generally, as the pavement section is opened to traffic, its “smoothing” effect tends to 
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slow the progression of roughness.  Note that, poorly finished pavements may have high initial 

IRI values (Hancock, 2000).  In these situations, at early age, traffic loading represented herein 

by ESAL’s tends to produce smoother pavements due to “smoothing” of the pavement surface 

irregularities.  Consequently, this may lead to a sudden decrease in the IRI profile.  This sudden 

drop may also happen due to the stabilization of: i) the subgrade soil moisture content and ii) the 

non-uniform consolidation of the subgrade during the early years of pavement life (Hancock, 

2000; Akhter, 2001).  Eventually, all pavements will have positive rates of roughness 

progression.   
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FIGURE 3.6: Predicted IRI Values for Different Initial IRI Values 
 

Figure 3.7 shows the effect of PCC slab thickness on the roughness.  As it can be noted, 

PCC slab thickness has a notable effect on roughness profiles.  As it can be observed in this case, 

thicker PCC slabs are generally associated with higher initial IRI values. On the other hand, 

higher IRI progression is noted on thinner slabs compare to those noted on thicker PCC slabs. In 
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other words, subjecting all slabs to the same traffic loading will cause thinner slabs to experience 

higher progression in their IRI profile.  This can clearly be noted when comparing the IRI profile 

of the 8- inch slab with the profile shown for the 12- inch slab.  For this reason, thicker slabs will 

generally sustain their initial IRI values for longer periods compare to thinner slabs.  Therefore, 

an increase in slab thickness will typically yield a reduction in IRI progression. This observation 

is in full agreement with our expectation.  
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FIGURE 3.7: Predicted IRI for Different Values of PCC Slab Thickness (in.) 

 
 
 Figure 3.8 identifies three different subgrade treatment types as a significant variable 

affecting the roughness.  As noted in Figure 3.8, pavements placed on lime treated subgrades are 

substantially smoother than those placed on non-treated subgrades.  Use of 6 in. lime treated 

subgrade will tend to decrease the roughness by about 63 in./mile after 7 years.  This indicates 

that subgrade treatment would be the most beneficial to sustain smoothness since a large 
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percentage of subgrade material consists of silt and clay particles.  This seems logical, knowing 

that subgrades with the high presence of clay are commonly treated with lime to reduce swelling 

potential.  This swelling will eventually lead to significant increase in roughness due to changes 

in the vertical profile of the PCC pavement.  Subgrade soils with a high amount of materials 

passing the 0.075 mm (US No. 200) sieve will generally have the high presence of clay.  In these 

situations, KDOT usually requires some form of subgrade treatment/stabilization.  As a result, 

subgrade treatment reduces the soil volume change potential under varying moisture conditions.  

Lime-treated subgrade uses the mixture of soil, lime, and water.  The lime is placed on the 

prepared subgrade, mixed and compacted.  After the mixture is compacted, the lime-treated 

subgrade is cured for 7 days by keeping the subgrade moist with water.  Water is added as 

necessary to the mixture during the mixing operation to provide a moisture content above the 

optimum moisture content of the raw soil being treated (Hancock, 2000; Akhter, 2001).   
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FIGURE 3.8: Predicted IRI Values for Various  Subgrade Treatment Cases 
 

 

3.1.5 Utilization 

The resulting 19-10-1 ANN-based IRI prediction model is encoded into an Excel-based 

software program.  Usage of the model will allow KDOT’s geotechnical/pavement unit to obtain 

reliable and accurate predictions of the future roughness conditions of PCC pavements based on 

given input variables.  The user is asked to enter all of the relevant input parameters in order to 

project the IRI profile for the selected number of years.   

3.2 SAS-Based Prediction Equation 

3.2.1 Methodology (SAS) 

Statistical Analysis System (SAS 1979) is one of the most widely used computer 

programs to perform regression analysis.  In this study, it was used to conduct the statistical 

analysis for the available database.  Among several different selection methods in SAS, the 
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backward selection procedure was used to determine which independent variables most influence 

the dependent variable in order to select the optimum model in this study (Helwig et al., 1979).  

This method starts with a full model (all independent variables entered) and then eliminates one 

variable at a time until a reasonable good regression model is selected in order to identify and 

distinguish those most significant independent variables which impact the dependent variable.  In 

order to develop a pavement performance predictive equation known as a regression model, 

multiple regression analysis was used as a statistical tool to find a correlation or relationship 

between one or more independent variables and a dependent variable (Neter and Wasserman, 

1974).  The general expression (Boyer, 1999) of the regression model, which is linear in form: 

Dependent variable = a + bX1 + cX2 + dX3 + …….                           (4) 

Where roughness (IRI) is the dependent variable; X1, X2, and X3 are independent variables; and 

a, b, c, and d are the linear correlation coefficients.   

 The model in this study was selected on the basis of the following criteria: 

1.   Coefficient of Determination (R2): R2 is a statistical quantity that measures 

how well a model predicts a dependent variable and thereby, represents a 

measure of the adequacy of the overall model.  The selected model in this 

study usually is the model with the largest R2 but with a minimum number 

of independent variables (Felker, 2000; Ott and Longnecker, 1993).    

2.   Mean Square Error (MSE): The goodness of fit was also examined by the 

Mean Square Error or Variance (σ2).  The model with the smallest MSE 

that involves the least number of independent variables can be considered 

as the best model (Ott and Longnecker, 1993; Felker, 2000).   

3.   Model Utility Test (F Test): In order to test the overall effectiveness of a 

model, the F Test evaluated whether at least one of the linear coefficients 

is non-zero.  If at least one of the linear coefficients is non-zero then the 

developed model will generally predict a dependent variable accurately.   
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4.   t Statistic: The “t” statistic represents the relative assurance that a given 

independent variable has an effect on the dependent variable.  In order to 

determine whether the independent variables are significant or not, the p-

value should be less than 0.05.     

5.   Correlation Coefficient: The correlation coefficient reflects the magnitude 

and sign of the effect an independent variable has on the dependent 

variable.    

6.   Practicality: From the multiple regression analysis, it may be found that 

some of the models developed may not be practical, explainable or logical.  

Engineering judgment was used to interpret which models are practical 

and which are not.  

 

3.2.2 Model Development (SAS) 

In order to develop a roughness prediction equation for the PCC pavements in Kansas, 

linear regression analysis using SAS program was used to find the best relationship between the 

independent variables and the dependent variable.  The selected model contains the most 

significant independent variables.   

The following model for predicting future IRI of the PCC pavements consisting of a 

dependent variable and ten independent variables was obtained:  

IRI (R2 = 0.73) = 218.38 - 0.61*FSI - 0.07*TSI + 7.88*MIAT                    (5)     
   + 9.10*SLTH + 8.45*BTY + 1.64*AP + 0.78*IIRI  
   - 0.01*WET - 1.673e-7*ESAL + 11.97*SUBTRT 
where: 

IRI =   yearly right wheel path roughness IRI value; 

FSI =   % subgrade materials passing No.4 sieve;  

TSI =   % subgrade materials passing No. 200 sieve; 

MIAT =   minimum annual temperature (°F); 

SLTH =   PCC slab thickness (inch); 

BTY =   drainable base or non-drainable base; 



 26 

AP =   age of pavement (year); 

IIRI =   initial right wheel path IRI (in./mile); 

WET =   cumulative number of wet days per year  (more than 0.4 in. precipitation); 

ESAL =   cumulative yearly ESAL values; and 

SUBTRT =   subgrade treatment:  no treatment, 6” lime-treated subgrade, or 6” fly ash treated 

subgrade 

The IRI prediction model yielded a coefficient of determination, R2 of 0.73 as shown in 

Figure 3.9.   

Table 3.1 represents each project by its identifying project K-number, the PCC slab 

thickness in inches, the type of subgrade treatment and whether the base is drainable.  Using the 

developed IRI prediction model, the 20-year and 30-year IRI values were projected.  Table 3.2 

shows the predicted IRI values.   

The IRI values for 5 of the 23 constructed projects are shown in Figures 3.10 through 

3.14.  The graphs show that although the measured IRI data is highly variable, the developed 

SAS-based prediction equation tends to adequately model the data in several projects (e.g. Figure 

3.11 and 3.13).  Figures 3.10, 3.12, and 3.14 show a variety of accuracies between the model and 

the actual data.  
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FIGURE 3.9: Comparison between Actual and Predicted IRI Values  
for the SAS-based Prediction Equation (R2=0.73) 

 

 In Figures 3.10 through 3.14, the x axis is the time in years that the IRI roughness values 

have been measured.  The y axis represents the IRI values according to each section (i.e. from 

county milepost 11.41 to 12.05 as shown in Figure 3.10).  The legend gives the county mileposts 

of each section boundary, and the average and the predicted IRI values for each project.  These 

figures show that the model consistently underestimated the actual IRI values, but followed the 

general trend of the actual IRI data.  The scatter of the actual IRI data will determine the general 

overall look of the graph.  In some figures, for example, Figure 3.10, there seems to be little 

correlation between the model and the actual data, but an examination of Figure 3.11 shows a 

good relationship between the model and the actual data.   
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TABLE 3.1: Portland Cement Concrete (PCC) Projects Major Input Variables 
 

  PCC  Avg. no. of  Drainable 
 Project K slab Subgrade freeze-thaw base or 

No. number thickness treatment cycles non- 
  (in.)  per year drainable 
     base 
1 K-2633-01 10 1 87 1 
2 K-2633-01 10 1 87 1 
3 K-3596-01 11 1 80 1 
4 K-3596-02 12 1 80 0 
5 K-4088-02 11 1 72 1 
6 K-4088-02 11 1 72 1 
7 K-2446-01 11 1 84 0 
8 K-3344-01 10.5 1 84 0 
9 K-2447-01 11 2 75 0 
10 K-2447-01 11 2 75 0 
11 K-3637-01 11 1 72 1 
12 K-4058-03 9 1 84 1 
13 K-3216-02 10 1 88 0 
14 K-3217-02 10 1 88 0 
15 K-4422-02 9 0 93 1 
16 K-3251-01 9 1 88 1 
17 K-3251-01 9 1 88 1 
18 K-3251-01 9 1 88 1 
19 K-3251-01 9 1 88 1 
20 K-4341-01 9 1 84 1 
21 K-4341-01 9 1 84 1 
22 K-3684-01 9 1 81 0 
23 K-4460-01 10 0 81 0 

 
Subgrade Treatment:  no treatment (N/A) (=0),  

       6” lime treated subgrade (=1), and   
       6” fly ash treated subgrade (=2) 

Drainable Base (=1) or Non-drainable Base (=0)  
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TABLE 3.2: Future 20-Year and 30-Year IRI Using SAS-based Prediction Equation 

 
No. Project K Route Lane Initial 20-yr 30-yr 

 Number 
  

IRI 
(in./mile) 

IRI 
(in./mile) 

IRI 
(in./mile) 

1 K-2633-01* I-35 East 84 111 121 
2 K-2633-01* I-35 West 99 111 121 
3 K-3596-01* I-35 East 52 96 106 
4 K-3596-02** I-35 East 90 100 110 
5 K-4088-02* I-35 East 97 92 101 
6 K-4088-02* I-35 West 100 123 132 
7 K-2446-01** I-70 North 46 76 86 
8 K-3344-01** I-70 South 36 66 76 
9 K-2447-01** I-70 North 110 120 129 
10 K-2447-01** I-70 South 97 120 129 
11 K-3637-01* I-435 West 80 92 101 
12 K-4058-03* US-50 Undivided 93 108 119 
13 K-3216-02** US-50 Undivided 57 82 91 
14 K-3217-02** US-50 Undivided 71 93 102 
15 K-4422-02* US-56 Undivided 97 113 125 
16 K-3251-01* US-75 East 71 87 95 
17 K-3251-01* US-75 East 67 87 95 
18 K-3251-01* US-75 West 71 87 96 
19 K-3251-01* US-75 West 68 83 92 
20 K-4341-01* US-75 East 68 90 100 
21 K-4341-01* US-75 West 85 92 103 
22 K-3684-01** K-15 West 50 74 84 
23 K-4460-01** K-96 North 67 73 83 

 
*    Drainable Base:  Edge Drain, Cement Treated Drainable Base (CTDB), Bound Drainable Base (BDB) 
**  Non-drainable Base:  No Edge Drain, Portland Cement Treated Base (PCTB)  
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Figure 3.10: IRI Values:  I-35, Lyon County, Miles 11.41~15.23 (K-2633-01, East) 
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FIGURE 3.11: IRI Values: I-35, Franklin County, Miles 3~9 (K-3596-02, East) 
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FIGURE 3.12: IRI Values:  US-50, Harvey County, Miles 28.64~35.56  
(K-4058-03, Undivided) 
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FIGURE 3.13: IRI Values: US-75, Jackson County, Miles 12~16.63 (K-3251-01, 
East) 
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FIGURE 3.14: IRI Values: K-96, Sedgwick County, Miles 4~14 (K-4460-01, North) 

 
 
 
 

3.2.3 SAS Sensitivity Analysis 

In order to assess the impact of each independent input variable on the time-

dependent IRI profile, a sensitivity analysis was performed (Figure 3.15).  The sensitivity 

analysis determined the effects of three levels, minimum, median, and maximum, of each 

independent variable while keeping all other input variables stationary.  Also, the age of 

the pavement was constant at seven years.  As shown in Figure 3.15, the PCC slab 

thickness and the initial roughness have greater impact on the roughness profile than the 

percent subgrade materials passing the US No. 200 sieve and cumulative yearly ESAL 

values.  Thinner PCC pavements tend to be smoother than thicker ones.  This may be 

attributed to the fact that thicker PCC slabs are generally associated with higher initial 

IRI values.  Similar observations have also been made by Siddique et al. (2003) for some 

other Kansas PCC pavements and by Perera and Kohn (2001) for the PCC pavements in 
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the LTPP program.  Also, PCC pavements built with lower IRI values tend to sustain 

smoothness longer.  Subgrade soils with a high amount of materials passing the US No. 

200 sieve tend to remain smoother.  This may appear to defy common experience.  

However, it is to be noted that those soils will generally have higher plasticity.  In that 

situation, KDOT usually would require some form of subgrade treatment/stabilization 

using lime to reduce volume change potential under varying moisture conditions.  Thus, a 

treated subgrade would be beneficial for sustaining smooth PCC pavements.  Also, the 

developed model is not highly sensitive to the traffic loading parameter (ESAL).      
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FIGURE 3.15: SAS Sensitivity Analysis 
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Chapter 4 

Summary, Conclusions and Recommendations  

 

4.1 Summary 

The dynamic ANN modeling strategy and linear regression analysis using the SAS program were 

used in this study to develop efficient time-dependent PCC pavement roughness prediction 

models.  Inputs for the developed models take into consideration various parameters related to 

the following seven categories: 

1. Pavement design factors;  represented by slab thickness and the use of 

drainable or non-drainable bases.  

2. Concrete material parameters;  characterized by the use of unit weight and 

cement factor.  

3. Subgrade treatment;  accounted for by the use of non-treated subgrades, 6 

in. lime treated subgrade, and 6 in. fly ash treated subgrade.   

4. Foundation soil properties;  represented in the model by the parameters 

such as % of natural subgrade soil material passing No. 4 sieve, % passing 

No. 200 sieve, and plasticity index.   

5. Prevailing traffic loadings;  accounted for by the use of the cumulative 

yearly ESAL values. 

6. Prevailing climatic conditions;  reflected in the model via the use of 

average number of freeze-thaw cycles per year, cumulative total number 

of days below 32 °F/yr, cumulative total number of days above 90 °F/yr, 

cumulative number of wet days/yr (i.e., having more than 0.4 in. 

precipitation) and minimum annual temperature (°F) . 

7. Construction quality; characterized by the initial IRI value.  
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4.2 CONCLUSIONS 

4.2.1 Conclusions Regarding ANN-based Model 

Notable conclusions derived from this study are listed below:  

1. The developed model produced output values that are very close to 

the actual (measured) IRI values.  The developed model could 

project the time-dependant roughness behavior with a reasonably 

high coefficient of determination, R2 = 0.90.   

2. Overall, roughness is more sensitive to PCC slab thickness, base 

drainability, initial IRI values, and subgrade treatment than the 

remaining factors.  

3. A higher initial roughness value (built- in construction 

irregularities) results in an overall higher roughness profile 

throughout the project service life.  As traffic passes over the 

pavement, a sudden drop from the higher initial IRI value may be 

expected due to some degree of pavement “smoothing” and 

stabilization of subgrade soil moisture.     

4. Of all the factors considered, drainable bases (or proper drainage 

of the sub-bases) influence the roughness the most for the JPCP 

pavements.  Non-drainable bases will result in PCC pavements 

having a higher roughness profile, and drainable bases tend to 

decrease the roughness.  Drainable bases help eliminate trapped 

water, which is the chief factor behind any soil swelling problems 

for subgrades or bases.  Therefore, drainable bases tend to help 

retain the smoothness for longer durations than non-drainable 

bases.       

5. Subgrade treatment type was identified as a significant variable 

affecting the roughness.  PCC pavements built on 6 in. lime treated 

subgrade (LTSG) are generally smoother than those built on non-

treated subgrades or 6 in. fly ash treated subgrade.  
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4.2.2 Conclusions Regarding SAS-based Model  

Roughness prediction models were developed in this study for Jointed Plain Concrete 

Pavements (JPCP) in Kansas using historical roughness, traffic and climatic data.  Thicker PCC 

slabs would generally lead to higher future roughness values.  This may be attributed to the fact 

that thicker PCC slabs are generally associated with higher initial IRI values.  The same would 

happen for higher initial (as constructed) roughness.  The future predicted roughness did not 

appear to be very sensitive to the traffic loading.       

The actual measured IRI roughness values for many of these projects have not stabilized 

and have a relative ly large fluctuation.  Due to these large variations, the predicted IRI values do 

not necessarily closely match the raw actual data.  This discrepancy between the actual and the 

predicted IRI values do not arbitrarily mean the developed model is faulty.  The more important 

concept in the study is that the trend of the actual roughness over time and the predicted IRI 

roughness values have a great deal of similarity, and both of these measures are similar to the 

actual measured IRI data.  For this inquiry based on a SAS model, R-squared values are not 

reliable measure to determine the validity of these predictions.      

4.3 Recommendations  

Since IRI values for many projects were still fluctuating, future updates of the developed models 

(as the age is increased and the trend of IRI profiles is stabilized) are expected to produce more 

accurate ANN-based and SAS-based models.  Moreover, model prediction accuracy decreases as 

extrapolation time is increased.  For this reason, it is imperative that such models should be 

annually updated on newly acquired data.  This update will allow the modified ANN-based 

model and SAS-based model to better project and predict IRI values for future years. 
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